From rust to riches: Computing goes green—or is that brown? Current silicon-based computing te
From rust to riches: Computing goes green—or is that brown? Current silicon-based computing technology is energy-inefficient. Information and communications technology is projected to use over 20% of global electricity production by 2030. So finding ways to decarbonise technology is an obvious target for energy savings. Professor Paolo Radaelli from Oxford’s Department of Physics, working with Diamond Light Source, the U.K.“s national synchrotron, has been leading research into more efficient alternatives to silicon. His group’s surprising findings are published in Nature in an article titled "Antiferromagnetic half-skyrmions and bimerons at room temperature.” Some of the antiferromagnetic textures they have found could emerge as prime candidates for low-energy antiferromagnetic spintronics at room temperature.Researchers have been working for a long time on alternative technologies to silicon. Oxides of common metals such as iron and copper are natural targets because they are already a technology staple, present in silicon-based computers, meaning there is a high chance of compatibility between the two technologies. Although oxides are great for storing information, they are not good at moving information around—a necessity for computation. However, one property of oxides that has emerged is that many are magnetic, which means it might be possible to move magnetic bits around, both in oxides and in other magnets, with very little energy required.Read more. -- source link
Tumblr Blog : materialsscienceandengineering.tumblr.com
#materials science#science#electronics#antiferromagnetism#silicon#oxides#computing#magnetism#iron oxide#particle physics#nanotechnology