Dynamic 3-D printing process features a light-driven twist The speed of light has come to 3-D printi
Dynamic 3-D printing process features a light-driven twist The speed of light has come to 3-D printing. Northwestern University engineers have developed a new method that uses light to improve 3-D printing speed and precision while also, in combination with a high-precision robot arm, providing the freedom to move, rotate or dilate each layer as the structure is being built.Most conventional 3-D printing processes rely on replicating a digital design model that is sliced into layers with the layers printed and assembled upwards like a cake. The Northwestern method introduces the ability to manipulate the original design layer by layer and pivot the printing direction without recreating the model. This “on-the-fly” feature enables the printing of more complicated structures and significantly improves manufacturing flexibility.“The 3-D printing process is no longer a way to merely make a replica of the designed model,” said Cheng Sun, associate professor of mechanical engineering at Northwestern’s McCormick School of Engineering. “Now we have a dynamic process that uses light to assemble all the layers but with a high degree of freedom to move each layer along the way.”Read more. -- source link
#materials science#science#3d printing#polymers#cross linking#polymerization#northwestern university