Artificial material protects light states on smallest length scalesLight not only plays a key role a
Artificial material protects light states on smallest length scalesLight not only plays a key role as an information carrier for optical computer chips, particularly for the next generation of quantum computers. Its lossless guidance around sharp corners on tiny chips and the precise control of its interaction with other light are the focus of research worldwide. Scientists at Paderborn University have now demonstrated the spatial confinement of a light wave to a point smaller than the wavelength in a topological photonic crystal. These are artificial electromagnetic materials that facilitate robust manipulation of light. The state is protected by special properties and is important for quantum chips, for example. The findings have now been published in Science Advances. Topological crystals function on the basis of specific structures, the properties of which remain largely unaffected by disturbances and deviations. While in normal photonic crystals the effects needed for light manipulation are fragile and can be affected by defects in the material structure, for example, in topological photonic crystals, the conditions are protected from this. The topological structures allow properties such as unidirectional light propagation and increased robustness for guiding photons, features that are crucial for future light-based technologies.Read more. -- source link
#materials science#science#photonics#photonic crystals#paderborn university#topology