Designing a dysprosium-free high-performance neodymium magnetFujitsu Limited today announced that, i
Designing a dysprosium-free high-performance neodymium magnetFujitsu Limited today announced that, in joint research with the National Institute for Materials Science (NIMS) and Fujitsu Laboratories Ltd., it has developed the world’s largest magnetic-reversal simulator, using a mesh covering more than 300 million micro-regions. Based on the large-scale magnetic-reversal simulation technology first developed in 2013, this new development offers a faster calculation algorithm and more efficient massive parallel processing. The simulations are run on the K computer. In addition, by utilizing this technology, Fujitsu conducted large-scale simulations to clarify the correlation between the fine structure of neodymium magnets, a type of permanent magnet, and magnetic strength, by examining the process of magnetic reversal in neodymium magnets. The results successfully demonstrated a way to develop high-strength neodymium magnets with more than twice the coercivity of previous magnets, without dysprosium. In conventional neodymium magnets, dysprosium alloying is indispensable for enhancing magnetic coercivity. These simulation techniques offer a clear design rule for high-performance neodymium magnets that do not rely on dysprosium. Fujitsu and NIMS will be making a joint presentation on these results at the 13th Joint MMM-Intermag Conference, running January 11-15, 2016, in San Diego, California.Read more. -- source link
#materials science#science#dysprosium#magnetism#neodymium