Ceres is the largest object in the asteroid belt that lies between the orbits of Mars and Jupiter, s
Ceres is the largest object in the asteroid belt that lies between the orbits of Mars and Jupiter, slightly closer to Mars’ orbit. Its diameter is approximately 945 kilometers (587 miles), making it the largest of the minor planets within the orbit of Neptune. The 33rd-largest known body in the Solar System, it is the only dwarf planet within the orbit of Neptune. Composed of rock and ice, Ceres is estimated to compose approximately one third of the mass of the entire asteroid belt. Ceres is the only object in the asteroid belt known to be rounded by its own gravity (though detailed analysis was required to exclude 4 Vesta). From Earth, the apparent magnitude of Ceres ranges from 6.7 to 9.3, peaking once every 15 to 16 months, hence even at its brightest it is too dim to be seen with the naked eye except under extremely dark skies. Dawn revealed that Ceres has a heavily cratered surface; nevertheless, Ceres does not have as many large craters as expected, likely due to past geological processes. An unexpectedly large number of Cererian craters have central pits, perhaps due to cryovolcanic processes, and many have central peaks. Ceres has one prominent mountain, Ahuna Mons; this peak appears to be a cryovolcano and has few craters, suggesting a maximum age of no more than a few hundred million years. A later computer simulation has suggested that there were originally other cryovolcanoes on Ceres that are now unrecognisable due to viscous relaxation. Several bright spots have been observed by Dawn, the brightest spot (“Spot 5”) located in the middle of an 80-kilometer (50 mi) crater called Occator. From images taken of Ceres on 4 May 2015, the secondary bright spot was revealed to actually be a group of scattered bright areas, possibly as many as ten. These bright features have an albedo of approximately 40% that are caused by a substance on the surface, possibly ice or salts, (with the realization of new studies are now likely deposits of salt composed mainly of hydrated magnesium sulphate). reflecting sunlight.sourceImage credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA - Processing Elisabetta Bonora & Marco Faccin / aliveuniverse.today / Daniel Machacek (false color images) -- source link
#ceres#dwarplanet#planetaanão#probe#asteroidbelt#cinturãodeasteroides#ahuna mons#astronomy#astronomia#asteroid#asteroide#solarsystem#sistemasolar#dawn