Tweaking the structure of metal-organic frameworks could transform the capacity to use methane as a
Tweaking the structure of metal-organic frameworks could transform the capacity to use methane as a fuelA hybrid material that could lead to cheaper and more effective methane storage has been created by a globally prominent research team at King Abdullah University of Science and Technology (KAUST), Saudi Arabia, with collaborators at the University of Crete, Greece.Natural gas, which is almost 95 percent methane, is a good candidate for replacing gasoline and coal. It can provide the same amount of energy as these fossil fuels, while releasing much less of the greenhouse gas carbon dioxide and the toxic pollutants carbon monoxide, nitrogen oxides and sulfur oxides. Methane is more environmentally friendly in several ways, but its widespread adoption for powering vehicles and other local and mobile applications is limited by shortcomings of existing storage and transport technologies.Professor Mohamed Eddaoudi of KAUST’s Advanced Membranes and Porous Materials Research Center leads a wide range of research projects involving metal-organic frameworks, or MOFs. These hybrid materials contain single metal ions or metal clusters held together by carbon-based ‘organic’ chemical groups known as linkers. Rearranging different linker and inorganic molecular building blocks allows scientists to fine-tune the size and chemical properties of the pore system in MOFs to perform useful functions. These include highly selective gas adsorption and catalysis.Read more. -- source link
#materials science#science#methane